调整方案模拟研究
根据前述试验测得的SCR反应器出口NOx分布结果.分析现有混合型AIG的设计局限性(如图3所示),电厂委托原SCR厂家对现有AIG结构进行了调整。新的AIG喷氨支管设计除了横向分区外.将横向中的每一区域在纵向设置为两组(如图4所示)。达到反应器深度方向可调节的目的.改造后氨喷射系统可实现喷氨流量在整个SCR入口截面的双向调节功能。
针对SCR脱硝厂家提出的AIG调整方案,借助CFD数值模拟手段对设计方案进行评估.通过对调整前后单个喷氨管路中氨压力分布、流线分布,AIG下游入口烟道截面及首层催化剂入口截面的NH3浓度分布及流线分布对比分析,对AIG调整结果进行数值模拟计算,评估调整方案的可行性及效果。
SCR脱硝系统为保持较高的脱硝效率通常加大催化剂体量,脱硝催化剂同时对SO2氧化成SO3起到催化作用。合理选择催化剂用量是解决SO2/SO3转化率的关键。
同时,脱硝系统的氨逃逸不可避免,通过CFD模拟设置合理的导流叶片,定期调整喷氨格栅(AIG)各个支管流量可使NH3混合得更加均匀,以降低氨逃逸。
随着我国SCR脱硝装置大面积的使用,脱硝设备对于氮氧化物高1效的脱除使得氮氧化物排放量得到良好的控制。
失效催化剂的再生和处理
失效催化剂的处理方式主要有三种:再生、清洗回用及填埋。对于结构保持完整、仍有较高活性的催化剂,一般由催化剂厂家采用**设备进行清洗,经检验合格后可继续使用;已经残破但仍有较高活性的的催化剂可以由催化剂原料提供商回收,经粉碎提炼出催化剂制造所需原料,再提供给催化剂厂家制造新催化剂;对于没有经济价值的旧催化剂,一般采用破碎后填埋的方法来处理。
首先,氨气脱硝,要取样化验催化剂活性降低的原因,烟气催化还原法脱硝,目的是确定清洗催化剂的时间和再生过程中需要添加的药品。其次,黑龙江脱硝,清洗催化剂上的粉尘(方法是在水槽中进行旋转清洗,**技术),再用高压水枪进一步清洗。再次,脱硝喷枪,在水中充入空气,使其产生漩涡或气泡对蜂巢内部进行深入清洗。同时在水中添加化学药剂,随气泡能更好的附在孔内。