SNCR适用于CFB机组,首先其炉膛出口温度一般在850~1000℃区间内,在SNCR工艺高1效“温度窗”内;其次燃烧后烟气分三股分别经过分离器,在分离器内剧烈混合且停留时间**过1.5秒,为SNCR工艺提供了**的优良反应器;最后由于CFB燃烧技术是一种低NOX燃烧技术,CFB锅炉出口NOX浓度较低,催化还原法脱硝厂家,再通过SNCR工艺,可确保出口浓度达到环保要求;此外SNCR工艺投资和运行费用都低于SCR工艺,工业试验和国外运行经验均表明SNCR系统用于CFB锅炉,设计合理可达50%以上脱硝效率,氨逃逸可低于8ppm。
SO2向SO3的转换率及测试方法的说明
锅炉系统中SO2氧化生成SO3主要受燃料中硫含量、烟气温度、烟气中的含氧量、空气过量程度、所使用的SCR催化剂成分、体积以及飞灰组成和粒径等诸多因素的影响。使用中应严格按照催化剂设计条件来运行SCR系统,宁夏催化还原法脱硝,尽量保证运行条件不要偏离设计条件,同时避免使用含硫量高的高硫煤或劣质煤种,烟气选择性催化还原法脱硝价格,避免在高温区长期运行,按设计要求运行除尘设备等。
SCR催化剂中的V、Mn、Fe等对主要反应起催化作用的同时,催化还原法脱硝报价,也会对SO2的氧化起催化作用,在燃用含硫煤的锅炉中会将烟气中的SO2氧化为SO3:2SO2 + O2 → 2SO3。可通过控制催化剂中的V、Mn、Fe组分的含量及赋存状态来控制SO2向SO3的转换率;另外添加WO3及MoO3也有助于抑制SO2氧化成SO3。
本工程通过以下几个方面来控制SO2氧化率<1%:
1. 选择较恰当的催化剂活性成分及配比;
2. 控制烟气中O2浓度的均匀分布;
3. 控制烟气中SO2浓度的均匀分布;
4. 控制烟气温度不**标。
以某火电厂氨喷射系统(AIG)改造为例,通过数值模拟计算,对AIG调整方案的效果进行了评估.结果表明将AIG改为具备双向调节功能后,有利于氨的均匀分配,对于烟气流速不均具有更好的适应性.脱硝反应器出口截面NOx分布相对标准偏差由40%降低至15%以内.可改善脱硝装置喷氨合理性,一定程度上延长催化剂使用寿命,消除反应器出口氨逃逸浓度局部过高的现象,降低了下游空气预热器硫酸氢0铵(ABS)腐蚀的风险,对火电厂实现NOx**低排放具有一定贡献.
SCR脱硝技术的核心是催化剂和氨喷射混合系统.氨喷射混合系统设计的优劣和实际运行中喷氨的合理性对脱硝装置的运行效果影响明显。催化剂入口截面的NH3/NO摩尔比及其分布.决定了反应器出口的NOx和氨逃逸浓度分布,并影响到整体脱硝效率和下游设备的硫酸氢0铵堵塞程度。